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The three-dimensional, primitive equations of motion have been integrated 
numerically in time for the case of turbulent, plane Poiseuille flow at very large 
Reynolds numbers. A total of 6720 uniform grid intervals were used, with sub- 
grid scale effects simulated with eddy coefficients proportional to the local 
velocity deformation. The agreement of calculated statistics against those 
measured by Laufer ranges from good to marginal. The eddy shapes are ex- 
amined, and only the u-component, longitudinal eddies are found to be elongated 
in the downstream direction. However, the lateral v eddies have distinct down- 
stream tilts. The turbulence energy balance is examined, including the separate 
effects of vertical diffusion of pressure and local kinetic energy. 

It is concluded that the numerical approach to the problem of turbulence at  
large Reynolds numbers is already profitable, with increased accuracy to be 
expected with modest increase of numerical resolution. 

1. Introduction 
For better understanding of turbulent flow, numerical integration in time and 

in three-dimensional space has several promising and distinguishing aspects. 
First, a detailed integration allows examination of flow patterns which produce 
the turbulence statistics, after sufficient time has elapsed since initial conditions 
were imposed. Phase information is retained so that typical flow structures in- 
cluding tilts and elongations of eddies may be studied. Secondly, except for 
effects of motions on scales too small and too large to resolve, the calculated 
motions are treated rigorously. The assumptions which are required because of 
the two scale effects become less crucial as computer speed and storage capacity 
increase. Third, these assumptions can be expressed very simply thereby enabling 
a large number of investigators to understand them and to introduce their own 
improvements. Finally, complications such as those introduced by unusual 
boundary Conditions or by the presence of additional forces are easily incor- 
porated into the numerical model. 

Numerical methods for use in three dimensions have been reported by Harlow 
&Welch (1965), Aziz & Hellums (1967), Orszag (1969) and Chorin (1968). How- 
ever, they treated motions with scales ranging down to the viscous cut-off and 
were therefore limited to relatively weak flows and small Reynolds numbers or 
Rayleigh numbers. The numerical resolution of all relevant scales for large 
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Reynolds numbers was first emphasized to be impossible by Corrsin (1961) and 
appears to be almost as impossible today. 

The idea of applying an averaging operator to the governing equations, with 
averaging typically being over the grid volume of the calculations to filter out 
the subgrid scale (SGS) motions, has been known since the early work of Reynolds 
(1895). Explicit calculations can then be made for the filtered variables after 
assumptions are made for the SGS Reynolds stresses which arise from the 
averaging process. This approach has been employed by several groups of 
meteorologists (Smagorinsky, Manabe & Halloway 1965; Leith 1965; Mintz 1965; 
Kasahara & Washington 1967) for the general circulation of the atmosphere 
with considerable success. Although their calculated flows are somewhat two- 
dimensional in that vertical accelerations are neglected and vertical velocities 
turn out to be very small in comparison with horizontal velocities, there is no 
reason why their general approach cannot be used successfully also in the study 
of fully three-dimensional turbulence. 

Furthermore, considerable research has already been carried out by Smagor- 
insky et al. (1965) and Lilly (1967) on an assumption which can be made for the SGS 
Reynolds stresses and which may be applicable if an inertial subrange exists on 
scales encompassing the grid interval. The assumption, to be discussed in 9 3, is 
applicable only for large Reynolds numbers. 

The main purpose of the paper is to test this meteorological approach upon an 
interesting case of laboratory turbulence : plane Poiseuille flow (channel flow) 
driven by a uniform pressure gradient. To the extent that the numerical results 
may be trusted, a second purpose is to examine properties of the turbulence 
patterns and statistics some of which cannot be measured experimentally. 

2. Governing equations with grid-scale averaging 
Following Reynolds ( 1895)) let the grid-scale averaging operator acting upon 

some dependent variable u(x, y, x ,  t )  be defined by the overbar symbol (-) as 

where t, 7, and 6 are dummy variables representing x7 y, and z ,  respectively, and 
Ax, Ay, and Az are the corresponding grid increments of the finite-difference 
equations. A filtered variable, denoted by the overbar, is thus a continuous 
function of space and time. Its spatial derivatives in finite-difference form should 
not be subject to excessive truncation errors because SGS components are almost 
entirely filtered out. Time derivatives in finite-difference form likewise will not 
have excessive truncation errors if the time increment At is sufficiently small as, 
for example, is required by certain explicit numerical stability criteria. 

After applying the overbar operator, the Navier-Stokes equations in flux form 
may be written 
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Here i ,  j = 1 , 2 , 3  correspond to x, y ,  z, respectively, where xis in the downstream 
direction, y is in the lateral direction parallel to the boundaries, and z is in the 
direction normal to the boundaries, here taken to be vertical. 

All velocities and co-ordinates in (2.2) have been made dimensionless by means 
of the length scale h separating the parallel boundaries, by the friction velocity 
u* = (7/p0)6, and by the time scale h/u*. The quantity 7 is the wall stress; po 
the density which is assumed constant; pipo u*z the dimensionless, resolvable 
pressure; g the gravitational acceleration; R the Reynolds number u*h/v; and v 
the kinematic viscosity. 

The primes are deviations from local grid-volume means, and the term u;ui 
thus represents the subgrid scale (SGS) Reynolds stress tensor. Reynolds’ 

__ 

averaging assumption __ _ _ _ _ _  
uiUj-iiiuj+l;iiu::+u’.s a f  = 0 
- - 

has been applied in expressing u, uj as l;ii Uj + uiui. However, this assumption is 
not separately necessary and may be incorporated into later assumptions if ux 
is formally replaced by uiuj-;iLiUj wherever it appears (see Lilly 1967). 

For a reason to be apparent in Q 3, +I&; has been added to ji/pou,2* and sub- 
tracted from the Reynolds-stress terms. (The summation convention is used 
here.) 

Now, denote the horizontal average of a quantity by the angular brackets: { ). 
The horizontal average of the continuity equation 

- 
__ 

for fully developed flow between parallel boundaries at z = 0,  1 then requires 
(W) = 0 and (awlat) = 0. To ensure this condition when the pressure is not 
obtained exactly, the horizontaI average of (2.2) for i = 3 may be subtracted 
from (2.2) to give 

a -  
axi 

-- (P”- 2x,) + R-1V2Ui, (2.4) 

- 
where (2.5) 

and the double prime ( )” denotes the deviation of a quantity from the horizontal 
average. Then it identically follows upon application of horizontal averaging to 
(2.4) that the right-hand side vanishes for i = 3. 

The quantity (a/ax,) Zx, ( = 2 when i = 1) in (2.4) is the dimensionless, gross 
downstream pressure gradient which would maintain a steady flow against the 
equilibrium, long-term wall friction u*2, produced by both boundaries. For pur- 
poses of visual examination of pressure eddies, it is convenient t o  remove this 
trend from j5/pou*2. 

In this study, the Reynolds number will be considered very large so that the 
viscous term can be neglected. The viscous sublayer at  the walls will therefore 

P“ = (p/pou*2+ iu;u;+ 2x,) - @/p0u*2+ Qzc.;zLf+ 22,) 
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not be treated explicitly. Equation (2.4) then can be written 

au, - a - 

at axi 
_ -  - &i - - (P" - 224,  ( 2 . 6 ~ )  

- -_ - a _ _  __ 

axj 
- 

where Qi = - - [ui u5 + u; ui - QS,, uf uj - Si, Sj,(U$ + uA2 - 4 uu)]. f ; (2.6b) 

From (2.6u, b)  the Poisson equation from which H" is to be calculated is 

where V2 is the Laplacian operator in three dimensions. Although the last term 
in (2.7) vanishes because of (2.3), it is retained here in anticipation of fj 5. 

3. Representation of subgrid scale (SGS) Reynolds stresses 

Remaining as unknowns in (2.4) are the SGS Reynolds stresses-. - + S i j a .  
The method of evaluation used here introduces SGS eddy coefficients in partial 
analogy to the molecular case: 

where K is the SGS eddy coefficient. At this point the reason for carrying 
$Sij&Talong in (2.6) and (3.1) becomes clear: to permit the left-hand side of 
(3.1) to become zero at  each point, as does the right-hand side, when the indices 
are contracted (see Hinze 1959, p. 21). 

Next, we shall use Smagorinsky's et al. (1965) assumption for K :  

K ( z , z J , z , ~ )  = ( c A ) ~  

where c is a dimensionless constant and A is a dimensionless, representative grid 
interval, here taken to be 

The quantity in brackets in (3.2) is one-half the squared velocity deformation, 
and is therefore always positive. 

The relationship between (3.1) and (3.3) and an inertial subrange has been 
neatly summarized by Leith (1968) as follows. If an inertial subrange exists on 
scales which encompass the grid interval, then the usual dimensional arguments 
demand that 

where is the rate of dissipation of turbulence kinetic energy within a local grid 
volume. But in a numerical calculation for homogeneous turbulence, it  may be 
shown that E is given, approximately, by 

A = (Ax.Ay.Az)*. (3.3) 

K = &*A*, (3.4) 
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Elimination of E between (3.4) and (3.5) then gives (3.2). An additional term 
should be added to the right-hand side of (3.5) for this non-homogeneous tur- 
bulence to represent an SGS triple-correlation term (see (9.2)). However, this 
term has been estimated to be small and has been omitted here. 

It has been deduced by Lilly (1 967) that, if 

c 2 0-17, 

then ( Z l ) ,  (3.2)-(3.5) are compatible with the known value of Kolmogoroff’s 
universal constant for the inertial subrange. It is understood that the finite 
difference form of (3.2) uses velocity differences taken over single grid intervals 
and that the finite-difference equations incorporate no significant internal damp- 
ing or numerical instabilities. Various values of c were tested here in preliminary 
integrations. The value 0.17 turned out to be too large, causing motions to damp 
until excessively large mean shear built up, and causing far too much of the total 
turbulence energy to reside in sub-grid scales. The value 

c = 0.10 (3.6) 

seemed optimum and yet did not allow turbulent motions to become excessively 
large. This value was used in obtaining the results to be presented in fj 7-5 9. 

Now it is desirable to obtain values of u;u; when i =j so that they may be 
added to the respective resolvable turbulence intensities, and the sums com- 
pared with measurements of total averaged intensities. The SGS turbulence in- 
tensities may be obtained by horizontally averaging (3. l),  given an expression 
for $ql. The fist-order theory of Lilly (1967) gives for this quantity 

- 

__ 
+u;u; = +K2/(C, A)z, (3.7) 

with c1 = 0.094. (3.8) 

The above value was used in this study. It should be noted that (3.1) and (3.7) 
essentially partition the SGS energy equally into its three parts because K in 
(3.2) is generally very poorly correlated with aiii/axj for i = j. 

4. The finite-difference network 
The region between boundaries to be treated has a downstream length of 3h 

and a lateral width of 0.7h. The reason for the distinction is that the eddies were 
anticipated to be stretched out in the downstream direction. 

The downstream length was subdivided into 24 equal grid intervals, the lateral 
width into 14, and the height into 20 equal grid intervals. Therefore, the three 
dimensionless grid intervals are 

AX = & = 0.125, 

Ay = 93 = 0.05, 

AZ = & = 0.05. 

14 

The total number of grid volumes used, 6720, is thus quite modest but is the 
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greatest number which could be conveniently stored within the high-speed 
memory of NCAR's CDC 6600 computer without making much greater use of 
memory devices having rather large access times. 

The grid meshes for the different dependent variables do not coincide but are 
staggered in space as in Harlow & Welch (1965). Grid points a t  whichw is stored 
are equally spaced between boundaries. Grid points for Y" are located vertically 
midway between grid points for W;  grid points for U are located horizontally in 
x midway between grid points for P"; grid points for V are located laterally mid- 
way in y between grid points for P". With this arrangement, the finite-difference 
form of the continuity equation is expressible compactly at grid points for P", 
which is very convenient when it comes to solving (2.7) for P". 

5. Method of solving the marching equations and Poisson's equation 
The 'leapfrog' method (see Fischer 1965), which has second-order accuracy in 

time, was utilized for the time differencing of the marching equations (2.6a), 
with respect to the advective terms in Q,. The Reynolds-stress terms were lagged 
in time (treated as with forward time steps) to avoid an unconditional numerical 
instability of the diffusion type. These terms probably helped to tie the odd and 
even time-step grids together so that oscillations of period 2At, which tend to 
develop with the leapfrog method, grew only very slowly. To further suppress 
them, a forward time step was performed once each 40 time steps. 

The finite-difference form used for the advective terms in (2.6b) is the simplest 
momentum and energy conserving form of Arakawa (1966) as described by Lilly 
(1965) for the staggered grid system. It has second-order accuracy in space and, 
in all cases studied by the writer, prevents non-linear numerical instability even 
when velocity fields contain much energy on the smallest scales. The same spatial 
form has also been used by Harlow & Welch (1965) and Orzsag (1968). 

The dimensionless time step was set at At = 0.0033, a value sufficiently small 
to avoid the conditional numerical instability of the advective or wave type. A 
smaller step would have been necessary except that the oo-ordinate system was 
moved at  a constant speed in the downstream direction equal to about 0.8 of 
the maximum speed which developed. Such a Galilean transformation does not 
alter any of the governing equations, but is taken into account in $ 6  in the 
boundary condition for the mean flow. 

In  the Poisson equation for PI', (2.71, the last term on the right may be ex- 
pressed in temporal finite-difference form as 

where nht = t. Here the procedure of Harlow & Welch (1965) was used ofsetting 
iZin+l)/axi = 0 as it should be with incompressibility, but retaining a@-l)/axi. 
The reason the latter quantity was not quite zero in actuality is that (2.7) was 
solved by an approximate method. This procedure minimizes values of aU;n+1)/axi 
for a given level of accuracy in the solution of ( 2 . 7 )  and prevents values from 
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building up systematically with time. The procedure works so well that it is not 
even necessary to have aEi/axi = 0 in the initial conditions ! 

The finite-differenae form of V 2 P a  employed the compact 7-point operator 
for V2. The right-hand side of (2.7) in finite-difference form was exactly com- 
patible with the left-hand side, both being obtained directly from (2.6) by 
application of the finite-difference divergence operator. The approximate method 
usedforsolving (2.7) wassuccessive point over-relaxation, with an over-relaxation 
coefficient of 1-6 (where 1.0 corresponds to Richardson’s method of no over- 
relaxation). On each time step, 40 sweeps or iterations were used after the first 
guess which consisted of P” from the preceding time step. After each solution 
the condition (P”)  = 0 was enforced exactly so that (a5jat)  = 0 would be main- 
tained exactly. 

The portion of the numerical calculations of P“ consumed 4-8 see during each 
time step; all the other calculations consumed another 3.8 see, and an additional 
5sec each step were consumed by frequent access to magnetic drums where 
various fields were temporarily stored. 

6. Boundary and initial conditions 
At the limits x = 0 , 3  and at the lateral limits y = 0,0.7, cyclic or repetitive 

boundary conditions were employed for U ,  V, 5, and P“.  This condition corre- 
sponds to the procedure in wave-number space of assigning a particular length 
for wave-number one. 

No-slip boundary oonditions cannot be employed here at  the walls, because 
the grid interval Az is very much larger than the height of the viscous sublayer, 
considering that the Reynolds number is indefinitely large. At z = +Az, which is 
the distance from the wall to the first grid points for U and V, the mean flow should 
obey the logarithmic ‘law of the wall’. However, the detailed flow obeys such a 
law only on the average. I n  the absence of any known, rigorous formulation which 
would hold on each time step and at each grid point, the following boundary 
conditions have been found to work satisfactorily: 

( 6 . 1 ~ )  

(6 . lb )  

( 6 . 1 ~ )  

where k is von KGm&n’s constant of 0.4. 
The horizontal average of ( 6 . l a )  agrees with the law of the wall because the 

last term has zero horizontal average. Also, the second derivatives in z of u“ 
and U, where Err = U -  @), are prescribed to be locally isotropic with respect to 
second derivatives in y or x, respectively. It may also be seen that the boundary 
conditions for ii”, ii and 9 do not involve the roughness length or the mean flow 
speed. This means that the dimensionless flow structure is not affected by either 
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a horizontal Galilean transformation or a change in roughness length, zo7 of the 
wall. It can be shown that the use of boundary conditions with this property, 
along with the non-dimensionalization by u* and h, allows a single numerical 
integration to apply generally to any value of h/zo, the only similarity parameter 
which is then relevant at large Reynolds number. 

In (6 .1  a, b) central differencing was used, with appropriate values of and 
assigned to exterior grid points located at z = - $Az, 1 + &Ax. 

Near the walls, at  z = &Az and 1 - +Az, it is not too unreasonable to require the 
law of the wall, 

(a) = Ic-lln ~ A z  - , (6.2) 
( 2  3 

to hold for the mean flow at each time step. This condition will occur only if 
(6.2) is prescribed initially and if a(Z)/at = 0 at  these two levels subsequently. 
The latter condition requires known values for (a/&) (u'w') in (2.66) for i = 1 
at these two levels. The latter quantity in turn requires a boundary condition on 
aK/az which is not available from (3.2). Also, the presence of the term 

-_ 

in an expansion of (2.7) requires that a2K/az2 be known a t  these two levels. These 
requirements were met by assuming 

K(z ,  y, -+Ax7 t )  = bK(x, y, +Az, t )  (6.3) 

a(zc)lat = 0 at x = +Az. (6-4) 

at exterior grid points, where b is a constant chosen such that 

Relationships analogous to (6.3, 6.4) also apply at z = 1 - +Ax. Typical values of 
b which resulted, -0.3, imply that aK/az > 0 at z = 4Az. 

The term (a2/az2) (&-+uz) occurring in an expansion of (2.7) also requires 
that 83G/az3 be known a t  z = &Az and 1 - +Az. Since the W grid points are located 
at  z = 0, Az, 2Az, . . . , this requirement necessitates the specification of W values 
at  exterior ZO grid points located at  z = - Az and 1 +Ax. These were assigned so 
that the equation of continuity would be compactly satisfied at the exterior 
grid points of P" located at  z = - &Az and 1 + 4Az. Values of pressure at  the latter 
points were assigned to satisfy the horizontal boundary conditions on @ " / a x  
which stem directly from (2.6) for i = 3. 

After completion of this study, it was realized that the correct expression for 
a3W/az3 centred at  z = $Az and 1 - &Az should be obtained from differentiation of 
(2.3): 

a3w - - - a (a2z) - - - a (a2z) - 

a23 ax az2 ay 322 a 

_ -  

The initial conditions for a'' were random except that the finite-difference 
continuity equation was obeyed. This requirement, which turned out to be un- 
necessary, was accomplished by use of a three-dimensional vector potential 
(Aziz & Hellums 1967) having random components. The initial magnitudes of 
the velocity components were about twice as large in magnitude as those observed 
experimentally by Laufer (1950). 
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About 1000 time steps were required before the U eddies reached typical 
equilibrium patterns of great elongation in the x direction. Subsequently, some 
experimenting was done with the horizontal boundary conditions, with the value 
of c in (3 .2) ,  the value of Ay, and the initial mean wind profile. Usually the initial 
condition was taken as the velocity structure which emerged from the preceding 
trial integration. Therefore, for the cases to be presented in the next sections for 
which c = 0.10 and Ay = 0-05, the initial conditions were almost as representative 
of typical velocity structures as subsequent results. The random 'starting' initial 
conditions previously mentioned are thus scarcely relevant to this particular 
study. 

7. Calculated mean flow profiles 
Dimensionless mean flow profiles which evolved under the influence of the 

Reynolds stress (uW+&') are shown in figure 1 (a)  at four widely different 
times. The end-points at  x = *Ax and 1 - *Ax agree with the measured profile 
of Laufer (1950) (for which Q~u*u,,,/v = 61,600) because of assumptions (6.2, 

6 .3 )  for (a/&) (u") at these levels, and because h/z, was prescribed the same as 
in Laufer's experiment, about 8.8 x 104. 

In  figure 1 (b ) ,  the average of 10 profiles of (a) a t  widely spaced times of integra- 
tion is shown along with Laufer's profile. The dimensionless time interval between 
individual profiles before averaging is 0.70 (208 time steps), so that the result is 
essentially an ensemble average. In  addition, profiles for the lower and upper 
channels have been averaged together. 

Aside from the general shape of the mean profile, the agreement with the 
measured profile is not very good. The excessive calculated flow speeds imply 
that a smaller K should be used so that LE smaller mean shear would support the 
proper value of resolvable stress. Yet, if K is decreased by decreasing c in (3.2) 
below a value of about 0.08, excessively large turbulence intensities (ii"2) and 
(9) are the result. The answer to this dilemma may require the abandonment 
of the use of the eddy coefficient and the employment of transport equations for 
the SGS Reynolds stresses (Lilly 1967). 

One may question the comparison here of the calculated profiles for very large 
Reynolds numbers with that measured at a modest Reynolds number. Only at  
very large Reynolds number is the shape of the interior 95% of the flow truly 
independent of Reynolds number. However, the actual profile shape at Reynolds 
numbers much larger than those employed by Laufer is unlikely to be less flat 
in the central region than his measured profile. The discrepancy between cal- 
culated and measured mean profiles thus appears to be real. 

Since nothing but the mean flow profile is affected by a change in h/z, (see 
(2 .6)  and (6.1,  6 .2) ,  and that in a known way (see (6 .2 ) ) ,  this model gives for a 
drag coefficient C, the following functional relationship : 

( 7 . l a )  

where ( 7 . l b )  
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from the numerical results presented and for Ic = 0-4. Because of the discrepancy 
just mentioned, the value of C& obtained here, 0.033, is 10 % smaller than that 
obtained by Laufer of 0.037. (In rendering Laufer's mean wind profile dimension- 
less at  his largest Reynolds number, his value of u* measured from the pressure 
drop and from the wall shear was used in preference to a smaller value measured 
by X-wire anemometry.) 

FIGURE 1. Calculated and measured mean wind profiles (made dimensionless by u*). Thin 
curves in (a )  were calculated at  four widely separated times between t = 0 and t = 7-41. 
Thin curve in (b)  is the average of 10 such profiles. Heavy curve is from Laufer (1950). 

8. Detailed flow patterns 
(i) Examination of an x-z plane 

The x-z plane at y = 4Ay, as well as two other planes of the motion, was examined 
periodically for its flow structure. Figure 2 shows typical patterns of a", W, V 
and P" on the ninth of the 10 consecutive periods ( t  = 6.71). 

A generally positive correlation between U and W is barely discernible in the 
upper half channel, and a negative correlation in the lower half. These enable 
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the transfer of resolvable momentum outward towards the walls. Near the walls, 
much of the momentum is carried by the SGS motions whose magn,budes will 
be examined in the next section. 

Isopleths in x-z plane at time=6.71 

FIGURE 2. Contours of velocity components U", 63, ij and of pressure P" in an x-z plane. 
Positive values ere contoured by thin solid isopleths, zero values by a heavier contour, 
and negative values by dotted contours. The dimensionless contour interval is 0.5 for 'ii" 
and P", and 0.25 for 5 and 5. Tick marks along edges indicate the grid intervals. Values 
of G", 3 and P have been centred to coincide with grid-point locations of G. 

The greater elongation of the 2 eddies in the downstream direction than of ij 
or W is perhaps the most distinguishing result of the calculations. It is interesting 
that the W eddies are not notably elongated even though the correlation between 
W and 2 has a magnitude near 0.3 or 0.4. 
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The U and V eddies have pronounced downstream tilts toward the walls. The 
angle of the tilt away from the vertical is typically in the neighbourhood of 
80" for U" and 60" for V. Downstream tilts are scarcely evident in the iii eddies. 
Since the tilting of an eddy structure is probably caused by mean shear, these 
results imply that the typical lifetime of a, U" eddy is larger than that of a V eddy 
while that of a ;Elj eddy is smaller. 

Isopleths in pz plane at time=6.71 

FIGURE 3. Contours of Ti" ,  a, 5 and P" in a y-z plane. See caption of 
figure 2 for other details. 

Pressure fluctuations can be seen to have maxima centred close to the boun- 
daries. These can often be traced to the term Z(aG/&) (azL/az) in an expansion of 
(2.7), since la(Z)/azl is much larger near the boundaries than any of the other 
filtered velocity gradients. In  particular, very near the lower boundary the 
pressure centres in figure 2 tend to have the sign of a%/ax. The pressure eddies 
show no indication of downstream elongation or tilt. 
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(ii) Examination of a y-x plane 

The same four variables at the same time are shown for the y-x plane, x = 4Ax, 
in figure 3. The correlations between ;II and W show up more clearly in this plane, 
and the circulations which transport the resolvable momentum vertically are 
frequently contained mainly in y-z planes. A good example occurs in the upper 
right portion where the reversal of the V flow centred at  (12Ay, 17Az) completes 
the circulation shown at this location of the W flow. Examination of U” = ;li - (E} 
in this region shows that this counter-clockwise rotating vortex (facing upstream) 
is transporting momentum towards the upper wall. It is evident that a particle 
within this vortex would transcribe a helical path while travelling downstream. 
Such helical vortices have been observed in the atmospheric boundary layer by 
Angell, Pack & Dickson (1968). 

It is not surprising that in figure 3 there is a pressure minimum existing near 
the centre of this vortex. The minimum is associated with the term 2(i35/az) (aW/ay) 
in an expansion of (2.7). When this term tends to be strongly negative because of 
the circulation, VZP” tends to be positive and H“ negative. 

(iii) Examination of an x-y plane 

Motions in the horizontal plane located at  x = :Ax = 0.175 are shown in figure 4. 
The elongation of the u eddies is seen to be very pronounced at  this level. The 
shape is of a very irregular river of higher speed fluid (lower portion of upper 
picture) embedded in slower moving fluid. The fact that only one such high speed 
river usually existed within the limits of y, and that its sign generally did not 
change in x, represents serious restrictions imposed by the limited physical extent 
of the region treated. 

Close inspection of figure 4 also shows that maxima in G” (gusts) tend to have 
sharper leading edges (downstream edges) than trailing edges. Thus the skewness 
((a;ii/a~)~)>l((aU/ax)”>s is negative. The average value at  this level from the en- 
semble of 10 cases is - 0.37, increasing to - 0.52 at z = 8Az. It is interesting that 
the same quantity without overbars is also negative, having a value of about 
- 0.5 in grid-produced turbulence (see e.g. Uberoi 1963). The skewness of aE/ay 
turned out to have an average value of - 0.17 at z = ;Ax, while that of a@/az 
at this level was + 0.17. 

The irregularity of these computer drawn figures is somewhat misleading on 
small scales because the contour plotting program was linear. Examination of 
longitudinal velocity spectra showed that there was no excess of energy on scales 
of 2Ax. 

9. Turbulence statistics 
(i) Turbulence intensities and Reynolds stress 

Vertical profiles of the three resolvable turbulence intensities ( ( V z ) ,  and 
(W”, and the resolvable mean Reynolds stress (UW) are shown in the upper half 
of figure 5 at time 6.71 by the thin curves. The heavy curves are the measure- 
ments of Laufer (1 950) made dimensionless byu*2at his largest Reynolds number. 

30 F L M  41 
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Near the walls the curves turn back towards zero because there much of the 
turbulence intensity is associated with the SGS motions. The average SGS kinetic 
energy obtained from (3 .7)  was partitioned (nearly equally) by (3.1) and added 
to the resolvable turbulence intensities to obtain the three lower-left-hand por- 
tions of figure 5. The addition of the SGS contributions improves the shapes 
somewhat near the boundaries, and adds little energy elsewhere. 

Isopleths in x-y plane (z=0.18) at time=6.71 

WUURE 4. Contours of U", W, ;ii and P" in the x-y plane at z = 0-175. See caption 
of figure 2 for other details. 

The total Reynolds stress, lower right, was formed by adding 

( - K ( g + E ) )  to (E).  

Of necessity it fluctuates about the correct equilibrium value, - 1 + 22 (heavy line) 
because of the interaction between the mean wind and the mean Reynolds stress. 
That is, an approximately steady mean wind is only obtained after the total 
Reynolds stress has approximately reached the equilibrium shape which balances 
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the gross downstream pressure gradient. Therefore the calculated distribution of 
dimensionless mean Reynolds stress can in no way be used to verify the numerical 
results. 
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n 
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(P+(o')2) 

0 2 
(iP+(w')2) 

(iiiJ) 

-2 0 2 
{ii5+W) 

FIGURE 5. Vertical profiles of dimensionless, horizontally averaged turbulence intensities 
and Reynolds stress (thin curves). Upper portion shows the resolvable turbulence in- 
tensities and (=); lowar portion the total intensities after adding in the subgrid scale 
estimates. Heavy curves are from the measurement of Laufer (1950). 

Profiles of total dimensionless turbulence intensities averaged from the 10 sets 
of data and over both halves of the channel are presented in figure 6. It appears 
from the deficiency in longitudinal turbulence intensity very near the boundaries 
that a larger portion of the SGS kinetic energy should have been allotted to the 
longitudinal component and correspondingly less to the lateral and vertical com- 
ponents. That is, a modification to (3.1) which would allow anisotropy of the SGS 
intensities is desirable. The profiles of (??+v~) and { E 2 + p )  are not similar 
enough to each other, but generally differ from the measurements by only 30 yo 
or less except at the first interior grid points. However, the profile of total 
longitudinal intensity is systematically larger than Laufer's by about 50 %. The 

30-2 
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overestimate may not be real if his measurements of (u--)2 averaged in time 
had suffered from lack of low frequency response to the elongated u eddies. 
Later measurements of this quantity which have been reported for atmospheric 
boundary turbulence and wall turbulence of pipe flow by Lumley & Panofsky 
(1964) are larger and range from 4.4 to 8.4. 

1 

z 

n 'i " 
0 2 4 0  2 0  2 

((;ii")2 + z> (3+3) (202 + Z Z >  

FIGURE 6. Averaged vertical profiles of the total turbulence intensities from the ensemble 
of results, t.hin curves, and from Laufer's measurements, heavy curves. 

The total correlation coefficient, C,,, defined by 

c,, = (uW+uIwI)/[((u11)2+u=) (W"W3)]4 

is shown in figure 7 for the numerical calculations by the solid line. It agrees well 
with that presented by Laufer (dashed line) at  his largest Reynolds number. 
However, it  appears that Laufer utilized his X-wire measurements of Reynolds 
stress, rather than the somewhat different distribution compatible with the 
measured downstream pressure gradient and measured wall shear, to obtain his 
correlation coefficients. Using the latter distribution, which is consistent with 
the wall stress previously employed for non-dimensionalization, the dash-dot 
profile in figure 7 is obtained. In  comparison with this profile, the numerically 
calculated values of - C ,  are too small because ( (U")2  + u-) of figure 6 is too 
large. 

(ii) The tubulence kinetic-energy balance 

The energy balance for the statistically steady state may be expressed as 

This expression for the rate of dissipation is different from the horizontal average 
of (3.5) because the latter represents the explicit rate of cascade of energy from 
resolvable scales to subgrid scales. The two must be equivalent, however. The 
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last term in (9.1) is an SGS effect which, following Lilly (1967), may be related 
to an eddy diffusion of SGS energy 

where u x i s  given by (3.7). It is assumed that K in  (9.2) is the same as K i n  (3.2). 

0 0.1 0.2 0.3 0.4 0.5 0.6 
- cu, 

FIGURE 7. Vertical profiles of the correlation coefficient between w and u. Thin solid curve 
is the average calculated profiIe from the modeI; dashed line is the profile presented by 
Laufer ; dash-dot line is Laufer's profile derived from stress measurements not involving 
X-wire anemometry. 

The terms in (9.1) averaged from the 10 cases, and averaged over both halves 
of the channel, are shown in figure 8. The rate of dissipation nearly balances the 
rate of production, -(EG+u7wf)(a(E)/az), except in the region 0.4 < x < 0.6. 
(This result differs from Laufer's rather qualitative estimate that c: is about 4 the 
rate of production between 0.1 < x < 0.3. In  a later study of turbulent pipe flow, 
however, Laufer (1954) found a much closer balance between the two.) It is dis- 
appointing that the eddy transfer terms 

do not have greater statistical reliability. However, it appears that in the region 
0.025 < x < 0.4 the kinetic energy diffusion rate, 

is generally less than O.l@), with the ' pressure-energy ' diffusion rate, 

being smaller yet. 
I - (a/&) (GP)I, 
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FIGURE 8. Average vertical profiles of numerically calculated terms of the turbulence 
kinetic-energy balance equation. Note change in scale in abscissa from linear to logarith- 
mic at + 1 .  
(a/&) (-;iij.P>. 
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10-3 ( K )  

FIGURE 9. Averaged vertica.1 profile of K ,  solid line. Dotted line is the profile that results 
if the grid volume is increased eightfold (see § 10 (ii)). 

The SGS energy diffusion rate, (9.2), which may be seen to be nearly propor- 
tional to ( 3 / i a x z )  (K)3, is significant only for z < 0.1. Since ( K )  had the average 
profile given in figure 9, the large negative values come from the negative cur- 
vature of (K)3 at its peak a t  z = 0-025, with the large positive values centred 
at  z = 0-075 being associated with reversed curvature there. Except for this 
large positive value, which probably cannot be trusted because of uncertainty 
of assumptions (9.2) and (3.2), the production rate of turbulence kinetic energy 
exceeds ( Z )  below x = 0.15 with the opposite occurring above. 



Numerical study of turbulent channel flow 47 1 

(iii) Pressure jluctuations and transfers towards isotropy 

The average vertical profile of the resolvable root-mean-square pressure fluctua- 
tion, ((Pr’)z)&, is shown in figure 10. For comparison, the total turbulence kinetic 
energy obtained from figure 6 is included. The pressure fluctuation is more 
uniform with height than the energy, and averages 0.85 of it. For isotropic 
turbulence, this fraction would correspond to $ (0.85) = 1.28 of ( u z )  or slightly 
larger if an estimate of the SGS contribution ((p‘/~,,u*~)z)* were included. The 
ratio measured by Uberoi (1 954) for isotropic turbulence is 0.7. There is no reason 
to believe, however, that the two should be the same. 

FIGURE 10. Averaged vertical profile of resolvable root-mean-square pressure fluctuation, 
solid curve, and total calculated turbulence kinetic energy, dashed curve. 

It is interesting to examine the terms ( i i@”/ax) ,  (@@“lay), and (W@/az), 
along with the pressure and velocity patterns, to see how the energy is trans- 
ferred from the ;li component to V and W. Where the former transfer term is 
positive and the latter two negative it indicates a transfer in this sense. Averaged 
vertical profiles of these terms are shown in figure 11. The transfer was in this 
direction at  all levels, with greatest resolvable transfer away from U” occurring 
at z = ZAz where 1F’’l and IU”I were largest. The small residual of the three terms 
is (a/&) (W~“), the negative of which forms a small part of the energy balance 
in figure 8. 

(iv) One-dimensional autocorrelation coeficients 

Autocorrelation coefficients, defined by 

R&, r) = (?*.;(x) U;(X + r))/(([ii~(x)]2) ([U;(X + r)I2))4, (9-3) 

where x = ix + jy + kz is the position vector and r = ir, + jr, + kr, is the dis- 
placement vector, have been averaged over the ensemble of 10 cases and are 
presented in figures 12 and 13 for j = i = 1,2,3 (no summation). Xote that the 
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correlations in (9.3) are with respect to the horizontal mean rather than individual 
Zine means. This procedure more closely simulates the experimental method of 
obtaining autocorrelations with respect to time means, because the horizontal 
mean values of this study are approximately ergodic whereas individual line means 
are not. The distinction is only important, however, for R,,(z, yZ.. 

0-5 

04 

0.3 

z 
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0.1 

0.0 
- 5  0 5 

Energy transfer terms 

0 

FIGURE 11. Averaged vertical profiles of the rate of transfer of 
resolvable energy from to (V2) and (3%). 

Both figures show that the autocorrelation which drops off least rapidly is 
for the velocity component in the direction of the displacement. This is the effect 
of the continuity equation. 

Figure 12 for R&, rX) clearly shows how the ;It eddies are elongated with respect 
to V and W. Values of R,,(z, rz)  and R33(z, r,) cross zero at about rx = 2Ax, which 
implies that the dominant wavelength in x of V and ui is only about SAX = 1. 
This result agrees with estimates which can be made from figure 4. 

The autocorrelation does not necessarily reach zero or become negative in 
this study because the cyclic boundary conditions allow the zero wave-number, 
or non-zero constant value, to occur along a line. This effect simulates eddies 
of much greater length, and is seen to occur significantly for R,,(0.20,rx) in 
figure 12. If r in (9.3) and in figures 12, 13 wcre lengthened to includc rz = 3 and 
rY = 0.7, these autocorrelation coefficients would climb symmetrically back up 
to unity. 
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In  figure 13 (a )  for Rll(z, r y ) ,  thin solid lines, comparison may be made with 
Laufer’s measurements, heavy curves, of this quantity. The more rapid de- 
crease of the calculated autocorrelations from unity may reflect the restriction 
0 6 y < 0.7. A greater lateral width would allow some wider eddies to exist. 
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H 

n 

m- 
0 
0, 
’* 0 
6 I 

- 0.5 E 

- 0.5 t 

-0.5 ’ I I I I I I I I I I 
0 0.25 0-50 0-75 1 40 1-25 

-+ r, 
FIGURE 12. Autocorrelation coefficients in z defined by (9.3) a t  the levels 0.05, 0.20, 0.35, 
and 0.50 (from top to bottom). R,, (solid line) is for the ?i component, R,, (dash-dot) for 
5, and R,, (dotted) for %. The displacement scale is at the bottom, and the intervals between 
tick marks are grid intervals. 

These would contribute towards increased correlations at small and moderate rv. 
This interpretation is not unambiguous as the zero wave-number is permitted 
in y .  But in figure 4 and at  all other times these planes were examined, there was 
no tendency for the U eddies to have the same sign over all y. 
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In  figure 13(b) the comparison of the calculated Rll(z,rz) with Laufer's 
measurements shows somewhat closer agreement except a t  the lowest level. 
This may be because there is no arbitrary restriction placed upon the maximum 
vertical scales of motion in the model. 
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FIGURE 13. Autocorrelation coefficients in y, (a) ,  and in z, ( b ) .  The heavy solid curves are 
from Laufer's measurements. See caption of figure 12 for other details. 
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After this study was completed, the work of Comte-Bellot (1965) on plane 
Poiseuille flow came to my attention. A comparison of the numerical results with 
those at  her largest Reynolds number (either 240,000 or 460,000, based upon 
full channel height) gives the following changes. The discrepancy in the mean 
flow profile is reduced by 40 % ; the overestimate in the longitudinal turbulence 
intensity is eliminated, although the other two turbulence intensities are then 
underestimated by about the same amount (30 yo) as they had been overestimated 
using Laufer's data; the correlation coefficient C,, agrees very closely with 
Comte-Bellot's, which essentially follows the dashed curve of figure 7; the auto- 
correlation coefficients in y and z (figure 13) generally agree more closely than 
with Laufer's; and the slow decay of R,, in the x direction (figure 12), especially 
at z = 0-20, is confirmed. 

0.4 - 

-103 -102 -10 0 10 102 103 104 105 

Vortex stretching terms 

FIGURE 14. Averaged vertical profiles of dimensionless resolvable vortex-stretching terms. 
Note change in abscissa scale from linear to logarithmic a t  +_ 10. 

(v) Filtered vortex-stretching terms 

In an equation for the production of a resolvable vorticity variance, (qi), where 
qz is, for example, the component in an x-z plane, the vortex-stretching term 
(p;aC/ay) is believed to be a very important source (Taylor 1938). Although the 
present study used the primitive equations of motion rather than the set of 
3 vorticity equations, it  is entirely appropriate to investigate the vortex- 
stretching terms which may be calculated. Their averaged vertical profiles are 
shown in figure 14. The unexpected result is that (?jia@/az) is negative over most 
of the channel. However, this result may be understood from inspection of the 
equation for the development of vorticity variance (7;): 
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where = (aE/ax) - (aU/ay). The third term on the right is potentially large be- 
cause it includes the effect of tilting by the mean shear of vorticity lying in a 
y-z plane, thereby converting it to vorticity in an x-y plane. It may be approxi- 
mated by (- (aUjay) (aiE/ay)) a(u}/az where aG/ay must be correlated with 
aG/ay through the correlation between U and W. This term is positive because 
the correlation has the sign opposite from that of a@)/&. Thus this vortex- 
tilting term could more than balance the vorticity dissipation (last term), allow- 
ing the stretching term to be small and even negative except near mid channel 
where U and W are not correlated. No such circumstance exists in the other two 
vorticity equations in which the vortex-stretching terms are therefore relatively 
important throughout the channel. 

Unfortunately, these numerical results can say nothing about the magnitude 
of the actual, unfiltered vortex-stretching terms in shear-flow turbulence. 

10. Checks on the reliability of the numerical model 
The sources of error in this numerical model are of two different kinds: those 

due to numerical techniques and those due to the physical assumptions. The 
latter consist of two types: those concerning the SGS Reynolds stresses and those 
concerning the boundary conditions. 

(i) Checks of numerical techniques 
Concerning the accuracy of solution of the V 2 P w  equation, (2.7), the space- 
averaged normalized residual 

(I v2Pff - ag,laxi I v2Pii I)v 
had a value of 2 x with the largest value a t  any point before space averaging 
being 1.4 x (The angular brackets with V subscript denote the space 
average.) The average residual velocity divergence, also normalized, which 
accompanied this inaccuracy of V2P" was 

( 1  azi /aXi  ~ ) ~ / ( l  a q a z  = 0.5 x 10-4, 

with the largest value at any level without vertical averaging being 1-3 x 10-4. 
(The area-averaged, individual magnitudes of the three components of the 
divergence were within & 50% of each other at all levels.) In comparison with 
truncation errors, these errors are very minor. 

With respect to the accuracy of the finite-difference advective terms in con- 
serving volume-averaged energy when used with the leapfrog time differencing, 
the following check was made. A t  the end of the numerical integration which has 
been presented, the mean shear, downstream mean pressure gradient, and eddy 
coefficients were all suddenly set and maintained at  zero so that there were no 
mean energy sources or sinks. The integration then was carried 143 time steps 
further. There was a small increase of space-averaged energy, E = +(iiLEi),, 
during this period at  an average dimensionless rate of 1.7 x 10-2. Since this rate 
ranges from only 1 yo to 0.01 yo of the rate of dissipation (see figure 8), it is safely 
negligible here. However, the increase was associated with forward time steps as a 
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jump occurred after each forward step. The magnitude of each jump was 
AEIE = 0.0012. In  a different test without any forward steps, but with energy 
sources and sinks present, an instability associated with the growth of the 2At 
oscillation occurred only after about 600 time steps. These two tests suggest, 
therefore, that the occasional forward step could have been performed less 
frequently than once each 40 time steps. 

During the first of the two above checks, it was interesting to note that in only 
31 time steps the resolvable shear stress (UW) had decreased to an average of 34 % 
of its initial values. In  the same period - QE had decreased only t o  79 yo 
of its initial value through pressure transfer to (V2)>v and (W2)v. Thus, isotropy for 
(SiUj) is approached much more rapidly when i +j. 

Concerning truncation errors in the replacement of fist and second spatial 
derivatives with centred difference formulas, no great accuracy can be claimed. 
The situation would not improve much by refining the grid mesh because a 
spectrum which decays with an exponent near - 3  is always postulated to 
occur for scales near twice the grid scale. Thus there will always be considerable 
energy residing in scales up to 8 or 10 times the grid interval which strongly 
affects the resolvable velocity derivatives and which have appreciable truncation 
errors. An integration in three-dimensional Fourier wave space would not suffer 
from this difficulty, but would present a very difficult problem with respect to 
the boundary conditions used here near the walls. 

(ii) Checks of assumptions for the SGS Reynolds stresses 

There does not seem to be any way of comparing the eddy-coefficient representa- 
tion against a better one short of additional integrations using a set of 6 differen- 
tial equations for (a/at) u x ,  and requiring some new assumptions. However, 
the magnitude of K ,  which depends upon the constant c in (3.2), may be checked 
by varying c in a series of integrations. Integrations were run with c = 0.06, 
0-08, 0.10, 0-12, 0.14 and 0.17. For the cases 0.08 6 c 6 0.12 the total statistics 
were fairly insensitive to the particular choice of c; and for reasons already 
mentioned, the value c = 0.10 is considered about optimum. 

An additional check on (3.2) would be to vary the grid volume, while holding c 
constant. An increase in A V  (with small-scale averaging volume considered to 
increase correspondingly) may be performed after the fact. Neighbouring values 
of velocity may be averaged together and all finite differences may be taken 
across larger intervals to obtain new velocity deformations and K values. How- 
ever, the statistics of the ‘total’ turbulence should remain invariant. This opera- 
tion was performed upon the individuaI realizations of the ensemble of numerical 
results already presented. Each smoothed value of velocity was obtained from 
the original ones by adding 4 the original value in with the 26 closest surrounding 
values, appropriately weighted. Each new grid interval was twice the original 
in length, so that A V  was increased by a factor of 8. The resulting terms of the 
turbulence kinetic-energy budget are shown in figure 15 which is to be compared 
with figure 8. The mean shear was not much affected by the averaging, and the 
decrease of (1 ZGW I )  which resulted was roughly compensated by the increase of 
( I  u’w‘ I )  associated with the increase of K (see figure 9, dotted curve). Thus the 
- 
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production term was not drastically altered by the increase of A V .  However, for 
z < 0.2, the SGS energy diffusion term is much too large, and ( E )  is then too large 
as a consequence. For z > 0.25 the SGS term is not large enough, and does not 
compensate for the smaller amplitudes of 
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Terms of turbulence kinetic-energy balance with larger grid volume 

FIGURE 15. Average vertical profiles of numerically calculated terms of the turbulence 
kinetic-energy balance equation after the grid volume was increased eightfold. Note change 
in scale o f  abscissa from linear to logarithmic a t  
(a /&)  ( -w'{~u;u;+(p'/pou$)}); -.-*, (a /&)  ( - % P ) .  

1. - - - , (a /& )  ( - @ q S ; ) ;  * - . * *  ~ _ _ _  

Evidently, a better assumption than (9.2) is needed for the quantity 

"(w(T+L)). 
a2 POu*2 

However, this check may be too stringent, since one would hardly consider per- 
forming a numerical integration of turbulent shear flow with only + the number 
of grid points used in this study. 

A test on the compatibility of the K formulation with the existence of an 
inertial subrange would be to check for the latter in the numerical results. How- 
ever, the extremely limited grid resolution did not permit the existence of any 
definite subrange in the numerical model. 

(iii) Checks on boundary-condition assumptions 
In  placing cyclic lateral boundaries at  z = 0, 3 and y = 0,0-7, the restrictions on 
length and width represent assumptions. Due to computer limitations, any check 
performed by changing one of these limits would have to be accompanied by 
change in grid resolution if the computer is employed to the same capacity. 
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Bearing in mind the dual nature of such a check, the upper limit of y was set at 
0-5 in a preliminary integration, with Ay being decreased correspondingly. The 
only apparent change was a proportional decrease in the width of the elongated 
zc eddies. For this reason, a greater y limit than that finally used would be very 
desirable so that more than one dominant, elongated 5 eddy could exist in a 
given horizontal plane. 

Concerning boundary conditions on Ti and 5 near the walls, ( 6 . 1 ~ ~  b )  are quite 
uncertain. Different conditions which were tested at x = &Ax are 

- 

(lO.la, b )  

and analogously at  x = 1 - &Az. Equation (10. la)  is seen to be consistent with 
the logarithmic law of the wall upon horizontal averaging, and both equations 
imply the law to hold locally also. No significant changes in the statistics were 
observed when (lO.la,  b )  were used in place of ( 6 . 1 ~ ~  b).  However, (6 . la ,  b )  are 
preferred here in that a change of roughness length zo then in no way alters the 
details of the turbulence if the dimensionless mean flow is shifted by the same 
amount of all levels. With (10.1 a, b ) ,  a change in zo does slightly affect the details 
of the flow. 

Other checks which have been made and are reported in Deardorff (1969) 
concern the existence of a very small 2At oscillation, and the testing of boundary 
conditions (6.1~) and (6.3) by using alternate assumptions. In  addition, the flow 
structure is there examined at  a different time, the spatial structure of the SGS 
eddy coefficient is pictured, vertical profiles of velocity skewness and kurtosis 
are presented, longitudinal velocity spectra are examined, and assumptions are 
discussed further and are listed in estimated order of importance. 

11. Summary and conclusions 
A three-dimensional numerical model has been described for the investigation 

of turbulent shear flow within a channel at  large Reynolds numbers. The following 
results, which are not amenable to easy measurements, are believed to be valid 
despite uncertainties arising from some of the assumptions: 

(i) The longitudinal 5 eddies are greatly elongated downstream and resemble 
irregular rivers of higher speed fluid immersed in slower fluid. 

(ii) The lateral ;ij eddies have downstream tilts, but less than for the ii eddies. 
(iii) The W eddies show scarcely any sign of downstream tilts. 
(iv) The pressure eddies are also not tilted, and frequently have maxima 

centred very near the walls. Their scales are slightly larger than those of the ;ij 
and W eddies, and their shapes are somewhat less irregular. 

(v) Helical vortices with circulations in y-z planes occur frequently and have 
heights ranging from half the channel height on down in scale. They are usually 
accompanied by relatively low pressure at their centres, and are a major source 
of momentum transport towards the walls. 

(vi) The magnitude of the pressure fluctuations does not decrease with height 
as fast as the turbulence kinetic energy. The ratio of the first to the second, 
averaged throughout the channel, is about 0.85. 
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(vii) In  the kinetic-energy balance equation, the pressure-diffusion term 
8 (EPf f ) /a z  has a smaller magnitude than the energy-diffusion term 48 (C%iyiiy)/8z, 
and the latter is only 10% or less of the rate of dissipation throughout most of 
the channel. 

(viii) The vortex-stretching term for resolvubte vorticity lying in z-y planes is 
negative over much of the channel. For the other two vorticity components it is 
highly positive throughout the channel. 

The following steps could be taken to improve the reliability and accuracy of 
the numerical model. The SGS eddy-coefficient formulation could be extended 
to allow anisotropy of the energy components on the sub-grid scale; or the eddy- 
coefficient representation could be abandoned in favour of local transport equa- 
tions for the SGS Reynolds stresses; and/or the numerical resolution and size of 
the region treated could be increased. Although the latter two improvements 
would demand considerably increased dependence upon the digital computer, 
the rapid rate of advancement in computer technology should make them feasible 
in the very near future. 

I gratefully acknowledge the suggestions and advice of D. K. Lilly at  several 
stages of this study. The interest and comments of S. A. Orszag on the internal 
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spheric Research is sponsored by the National Science Foundation. 
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